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Abstract

specification in agent systems.

Background: In ecological networks, natural communities are studied from a complex systems perspective by
representing interactions among species within them in the form of a graph, which is in turn analysed using
mathematical tools. Topological features encountered in complex networks have been proved to provide the
systems they represent with interesting attributes such as robustness and stability, which in ecological systems
translates into the ability of communities to resist perturbations of different kinds. A focus of research in
community ecology is on understanding the mechanisms by which these complex networks of interactions among
species in a community arise. We employ an agent-based approach to model ecological processes operating at
the species’ interaction level for the study of the emergence of organisation in ecological networks.

Results: We have designed protocols of interaction among agents in a multi-agent system based on ecological
processes occurring at the interaction level between species in plant-animal mutualistic communities. Interaction
models for agents coordination thus engineered facilitate the emergence of network features such as those found
in ecological networks of interacting species, in our artificial societies of agents.

Conclusions: Agent based models developed in this way facilitate the automation of the design an execution of
simulation experiments that allow for the exploration of diverse behavioural mechanisms believed to be
responsible for community organisation in ecological communities. This automated way of conducting
experiments empowers the study of ecological networks by exploiting the expressive power of interaction models

Background

Complex Systems

Complex systems of interacting entities are ubiquitous
in nature and the artificial world, ranging from networks
of interacting computers in cyberspace, different types of
transportation networks such as airports and the links
connecting them, power grids that provide cities with
electricity, human interactions of different kinds such as
researchers and their collaborations; to the highly orga-
nised webs of interactions that we find in biological sys-
tems such as protein, gene, cell, and neural networks,
and the relationships found in real communities in a
given ecosystem, where the interacting species, each of
them with its own genetic, phylogenetic, life-history, and
evolutionary background come together in a particular
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habitat and form complex but organised collections of
interacting entities.

All of these are examples of complex systems, where
the system-level organisation emerges as a consequence
of the coupled interactions amongst their component
parts rather than being exerted by some control
mechanism operating at the level of the system. The
behaviour and organisation of such systems are then,
not easily inferred by only looking at the interacting
components in the system but it is caused by the set of
complex and intricate relationships that are realised
between them.

Network theory has facilitated the study of complex
systems in a large number of areas [1,2], where the con-
figuration of the interactions among entities are of
utmost importance for the stability and long term beha-
viour of this type of systems. By using mathematical
properties obtained from the graph representing the net-
work of connections between entities in complex
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systems, important features of their overall organisation,
such as their robustness to the failure of nodes, or the
information propagation speed; properties which in turn
may provide a better understanding of the relationship
between the complexity and stability of the systems
being analysed.

Ecological Interactions

Animal behaviour and interactions comprise a subject of
study that has historically received much attention in
the field of ecology [3-6], not only because of the wide
set of different types of interactions that can occur
among species but also because these interactions are
believed to account for the huge biodiversity encoun-
tered in our planet and more specifically for the organi-
sation of communities within the very dissimilar
collection of ecosystems found on Earth.

Different classifications have been attempted for cate-
gorising the whole range of interactions encountered
between species in nature, and roughly, interactions fall
into two main categories: antagonistic and mutualistic
interactions. In this work we are mainly interested in
mutualistic interactions, in which both of the interacting
partners/species benefit from it, and how networks of
relationships between mutualistic species emerge in
nature.

Mutualistic relationships are ubiquitous in nature (Fig-
ure 1), ranging from the interactions between plants and
their animal pollinators or seed dispersers, without
which life on Earth could seldom be imagined, to the
complex association between fungi and algae that form
lichens. All these interactions have arisen in nature
because they represent an important advantage for the
individuals taking part on them, and moreover, in some
cases, one or both of the interacting partners would not
be able to survive outside the interaction.

Ecological Networks

Charles Darwin described the intricate network of rela-
tionships between species in a natural community using
the metaphor of an “entangled bank”, in which he
depicted a typical natural scene of a group of different
species living together and interacting. In this example

Figure 1 Examples of mutualistic relationships in nature. From
left to right: plant-pollinator interaction between a bee and a
flower, plant-frugivore interaction between a bird and a fleshy fruit
plant, and mutualistic association between fungi and algae (ie. a
lichen).
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scene we can see represented the web of complex rela-
tions by which species in natural ecosystems are bound
together [7].

A focus of research in ecology is based on the charac-
terisation of different kinds of interactions that are
observed amongst individuals within ecological commu-
nities. The study of the patterns and structure of these
interactions and their implications for community orga-
nisation and persistence has been tackled through the
application of concepts borrowed from the mathematical
field of network theory, giving way to the ecological dis-
cipline that has come to be known as ecological
networks.

In ecological networks the interactions between spe-
cies in natural communities are represented in the form
of a graph, where vertices and edges represent species
and their relationships respectively. Figure 2 shows an
example of a food web, a kind of ecological network in
which the edges between species represent trophic rela-
tions, from a real community (a grassland in the United
Kingdom). The representation of species in a commu-
nity and their interactions thus facilitates the analyses of
this kind of complex system. Ecological network
research is concerned with the analysis of the relation-
ships amongst species in an ecosystem from a network
perspective, in order to determine community level fea-
tures such as those described above for complex sys-
tems. These analyses have allowed scientists to better
understand the organisational dynamics of the ecosys-
tems represented by these entangled networks of inter-
actions by establishing links between the dynamics
occurring at the individual and species level to the
structure of the network representing their relationships
[8].

Studies of this kind performed on natural commu-
nities, have shown that these systems are generally char-
acterised by small world patterns [9,10], contributing in

Figure 2 Example of a complex food web in a real community
(grassland in the United Kingdom). Nodes and edges (in the
graph) represent species and trophic interactions among them
respectively. (Image produced with FoodWeb3D, written by RJ.
Williams and provided by the Pacific Ecoinformatics and
Computational Ecology Lab http://www.foodwebs.org).
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this way to fast propagation of the information across
the networks; truncated power law degree distributions
[11], a feature characteristic of scale-free networks, with
a small number of nodes possessing degrees greatly
exceeding the average (usually referenced as “hubs”) that
are believed to be the strength and, at the same time,
the weakness of this kind of networks; and the impor-
tance of weak interactions for the maintenance of the
overall community [12]. As an example of some of these
features, in Figure 2 we can see how no species is dis-
tant from the most connected ones (small world) and it
can also be appreciated a set of species (the two nodes
on the top centre of the figure) which degree exceeds
considerably that of the rest of species, giving this net-
work a scale-free character.

In addition to these features, other properties believed
to be important for the characterisation of interaction
networks in natural communities such as: species rich-
ness, connectance, link distribution frequencies, among
others are also commonly studied (e.g. [13-15]).

In this paper we are interested in the study of plausi-
ble mechanisms, occurring at the interaction level
between species in ecological communities, for the
emergence of important system-level patterns often
encountered in ecological networks and that provide
these systems with the properties introduced above. We
focus on the interactions and patterns seen in mutualis-
tic communities, which are studied through the analysis
of mutualistic networks.

Mutualistic Networks

Within ecological networks, a specific area of research is
that devoted to the study of communities from a mutua-
listic perspective. Species and their mutualistic relation-
ships can be represented as graphs in the way described
above in order to obtain the mutualistic network of
interactions for a particular community, which can in
turn help us study the effects of these mutualistic inter-
actions on the organisation of the community.

Studies on mutualistic networks have demonstrated
that these kind of networks share some of the patterns
and features described above with other kinds of ecolo-
gical networks [16,17], as for example their heterogene-
ity or scale-free character, possessing a small proportion
of species that are more connected than expected by
chance while the majority of them exhibit a low degree;
but at the same time are different in many respects,
exhibiting properties that are characteristic of these kind
of networks: with generalist species interacting with sub-
sets of the species with which more generalist species
interact (i.e. they are nested) [18], and being pervasively
asymmetric regarding the links between species [19].

An important distinction to be made, because it is
going to determine the shape of the networks of interac-
tions between agents in our agent-based model, is the
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fact that mutualistic networks are represented by bipar-
tite graphs, since the species are separated into two sets
of distinct entities: the hosts and the mutualists or, spe-
cifically for the case of mutualistic relationships between
plants and their free living animal pollinators, the hosts
and the visitors. This important property is also what
allow us to obtain measurements that are exclusive of
these kind of networks, like for example their nestedness
(i.e. the degree to which the interactions of specialist
species are well-defined subsets of the interactions of
more generalist species).

Figure 3 shows an example of a mutualistic network,
where it is possible to see how the species are arranged
in clearly distinct groups, forming a bipartite graph,
where species only interact with species on the other
side of the graph. This is easily understood when we
imagine a community of flowering plants and their ani-
mal pollinators (e.g. insects, birds); in such cases the
mutualistic relationship is based around the pollination
service provided by the animals present in the commu-
nity, therefore different animal species interact with
plant species but they do not interact with other animal
species in this sense (they might interact in other ways,
but that are not relevant for the mutualistic relationship
subject of study), similarly, plants do not pollinate other
plant species, and hence, there are no links between
nodes representing plant species.

The mechanisms by which ecological networks are
formed and maintained across landscapes and through
time are currently not completely understood, and
nowadays researchers within the field of ecology are
focusing efforts on this topic in order to be able to pre-
dict the effects that disturbances may have on

Pajek

Figure 3 Example of a mutualistic network of a real
community. Nodes and edges represent species and their
mutualistic relationships respectively. (Figure provided by P. Jordano.
Reproduced with permission.)
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community organisation, biodiversity maintenance, and
ultimately ecosystems function.

This is in fact a complex research agenda because, as
we have seen, ecological networks are complex systems,
exhibiting many of the features studied within the field
of the complex sciences. As in any other area of this
research field, natural communities are systems com-
posed of many interacting entities that are under con-
stant coevolutionary and adaptive change and which are
dynamically self-organised; to put it simply, they are sys-
tems of complex interacting parts in which the system-
level properties and behaviour are very difficult to
explain by only looking at their component parts. In
ecology the problem is further complicated by the fact
that organisms in communities are themselves complex
systems, and only to begin to fully understand these
component parts of the whole system is a very difficult
task in itself.

Within the field of mutualistic networks, however,
some advances have been made on this direction, and
some processes have been identified as potential expla-
natory mechanisms for the patterns encountered at the
system level in this particular type of ecological net-
works. When studying natural communities it is com-
mon to search for answers about system level properties
in the biological and ecological processes going on at
the level of the individuals forming those communities
and the relations amongst them, and it has been argued
that such mechanisms might be responsible for the fea-
tures seen in these complex mutualistic associations of
species [20].

We are particularly interested in those mechanisms
because in this work we have taken inspiration from
some of the processes characteristic of mutualistic inter-
actions, such as for example: trait matching, habitat
occupation (i.e. spatial distribution), the formation of
meta-communities; to define protocols of interactions
among agents in an agent based model that will allow
us to study the extent to which these and other
mechanisms might be behind the patterns encountered
in mutualistic communities in an automated manner.

By specifying protocols of interactions between agents
in our model, we want to facilitate the experimentation,
based on computer simulations, on diverse processes
that might be thought as potential mechanisms for the
explanation of organisational patterns encountered in
this kind of natural communities.

Models for the Study of Ecological Networks

As mentioned above, several studies have focused on the
problem of understanding the processes and mechan-
isms that might be behind the emergence of the proper-
ties found in ecological networks in general and
mutualistic networks in particular. In [20] the authors
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review a series of theorised mechanisms that have been
proposed in recent years within the field of ecology, as
possible causes for the appearance of these patterns in
plant-animal mutualistic networks. It is from these ideas
that we depart in this work. The study of these and
other mechanisms and their consequences however, is
difficult to achieve in real ecosystems, not only because
of the complexities of the experimental settings needed
in order to be able to analyse a whole community and
the interactions within it, but also because of the large
timescales at which changes in the composition and
configuration of communities might happen. Modelling
these systems have been then an useful an important
approach taken by many scientists studying the origins
of patterns in ecological networks.

These studies usually focus on particular mechanisms
that the authors favour as important processes behind
the systems’ patterns and behaviour. In [21], Williams
and Martinez propose the nichemodel, which based on
the hypothesised dietary niche of the species composing
the system performs well in obtaining some of the com-
mon features encountered in ecological networks.
Another interesting approach have been proposed by
Petchey et al. [22]; in this model, the authors incorpo-
rate body size and foraging behaviour, grounded in
metabolic factors, into the framework of food web struc-
ture analysis.

Approaches like the ones mentioned above are
grounded on the behavioural ecology and phenotypic
features of species. Another trend in the study of these
ecological systems considers evolution to be an impor-
tant mechanism behind their organisation. Drossel and
McKane [23,24] developed a food web model with evo-
lution which builds on these ideas. In their model,
population dynamics in the system are governed by dif-
ferential equations, in which functional responses, the
terms that determine the type of interactions between
species, are determined by a series of attributes of each
species. These attributes are subject to variation and
selection.

The models introduced above are the most closely
related approaches found in the literature to our own
work, since they incorporate ideas of animal behaviour
similar to those studied in this paper for the representa-
tion of interactions between agents in our model. None-
theless, many other approximations have been proposed
(see [8] for a summary) focusing on other aspects of the
origin of ecological networks.

In addition to the fact that we focus on different
aspects of the behaviour of species than those consid-
ered in previous models, our approximation goes
beyond the studies presented above at least in two other
respects: (i) it allows for the specification of interaction
mechanisms between agents/species in a straightforward
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manner, which facilitates the work of the researcher
because it makes easier the translation of ecological
mechanisms into the model; this way of specifying inter-
actions (ii) makes the model easily extendable, facilitat-
ing the incorporation of new processes and mechanisms
into the experimental framework. Both of these features
support the experimentation in an automated manner.

Interaction Centred Agents Systems

In the field of multi-agent systems, different approaches
for communication between entities living in this kind
of distributed environments exist, and recently, approxi-
mations based on the specification of protocols of inter-
actions for agent coordination and communication have
been proved to be useful in large systems because of
their scalability and compactness [25].

Apart from the properties mentioned above, which are
of relevance mainly to the multi-agent community, we
are interested in methods of this kind for communica-
tion in multi-agent systems because they are mainly
based on the definition and use of protocols for coordi-
nating agents taking part in a given interaction, which
represents an easy and straightforward way of translat-
ing ecological concepts and processes that are of interest
for the study of species interactions.

In the remainder of this section we present one of the
tools available within the multi-agent systems commu-
nity for implementing agent based systems with the
characteristics described above. We explain the main
features of the system and the coordination language
employed for agents’ communication within it, which
allows us to present the reasons why we have chosen
this system for implementing our agent based model.
Lightweight Coordination Calculus
Lightweight Coordination Calculus (LCC) [26] is a pro-
cess calculus that has been proposed as a language for
specifying interactions between heterogeneous electronic
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entities operating in peer-to-peer (P2P) environments.
Apart from allowing a distributed coordination of the
interactions amongst artificial agents through protocols,
it is a lightweight language that provides flexibility and
clearness for the specification of the interactions.

The use of LCC for the development of our agent
based model allows us to program in an interaction
oriented manner, where we focus on a declarative speci-
fication of the coordination protocol, the execution of
which is totally independent of the design of the agents
taking part within it.

This is advantageous from a behavioural ecology point
of view because the system’s designer need only to focus
on the mechanisms and processes occurring at the
interaction level between species in natural communities
when specifying the interactions between the agents in
the model.

LCC Syntax

The syntax of LCC, as well as the specification of its
expansion engine and framework, have been detailed in
a series of papers [26-28] and we are not going into all
of its details here but we summarise the important parts
to bear in mind about interaction models specification
using this language for the definition of the interaction
protocols in our agents system.

In Figure 4, taken from [28], the syntax definition of
the LCC is presented, including an explanation of the
language itself and the framework. Any protocol thus
specified consists of a set of agent clauses, as specified
by the definition of the Framework; and will contain at
least two of them, because in any given interaction there
must be at least two roles in order for it to happen.
These interactions are defined from the perspective of
the participating agent roles, such that in any given
interaction at least one participant taking each role spe-
cified by the protocol, must be present in order for the
framework to be successfully completed. Each clause is

Framework := {Clause,...}
Clause = Agent:: Dn
Agent = a(Type,Id)
Dn =
Message :=
C = Term|CAC|CVC
Type = Term
M = Term

Agent | Message | Dn then Dn | Dn or Dn | Dn par Dn | null + C
M = Agent | M = Agent + C | M < Agent|C <+ M < Agent

Where null denotes an event which does not involve message passing; T'erm is a structured term in Prolog
syntax and Id is either a variable or a unique identifier for the agent.

Figure 4 Syntax of LCC dialogue framework.
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defined by a series of communicative actions (i.e. mes-
sages) that are performed by the agent adopting the role
defined by the given clause. These clauses are essentially
the definition of the agents, or more precisely, the speci-
fication of the actions to be undertaken by any agent in
the system assuming a particular role as defined by a
clause.

A role defined within a protocol in this way is meant
to represent the communicative activity for a group of
agents (any agent able to fulfil the role) instead of indi-
viduals. Clauses’ definitions consist then of a set of
operations Dnu in Figure 4. These operations will be
used for the specification of the protocol: null denotes
an event which does not involve message passing; con-
trol flow operations such as: then , or , par , are logical
connectives used to determine whether actions must be
executed in sequence, only one of them should be exe-
cuted (choice), or they have to be executed in parallel,
respectively; the operator <— denotes logical implication
and is used to define constraints that determine agents’
obligations for each role in the protocol, with precondi-
tions appearing on the right of the <, and postcondi-
tions on its left; M = Agent denotes that a message, M,
is sent out to agent “Agent”; and M < Agent denotes
that a message, M, from agent “Agent” is received.

Another advantage of using LCC is related to its com-
pactness regarding the definition of interactions among
species in our ecological model, which permits simple
and powerful mechanisms for analysis and deployment.
This feature let us infer in an efficient manner the out-
come of particular interactions under certain circum-
stances without compromising the level of detail that we
intend to achieve when defining those interactions,
which is useful when considering different species inter-
action mechanisms and the behaviour they might
produce.

OpenKnowledge

For the implementation of our agent based model of
interacting species we employ the OpenKnowledge sys-
tem [29,30], which allows us to use protocols of interac-
tions of the kind described above for the formalisation
and description of the interactions amongst entities in a
digital system in general and agents in a multi-agent
system in particular.

The OpenKnowledge system is a P2P based system
that makes use of LCC for the specification of models
of interaction among autonomous agents which commu-
nicate through a P2P network. This open source system
provides an interaction centred approach for knowledge
sharing and agents communication that facilitates the
engineering of intelligent systems using the multi-agent
systems paradigm for software engineering.

The details of the architecture and how the system
works are explained in [29] and [30], however, there
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are two concepts that are important for the realisation
of the interaction among agents/individuals within the
system/ecosystem, and that will be useful for us when
defining the agents and their interactions in the
model:

1. Interaction Models (IMs): Interaction models are
the formal specifications of the protocols to be fol-
lowed by any pair of agents involved in an interac-
tion, which are specified in a language devised for
this purpose, in our case LCC. IMs contain the defi-
nition of roles and the interactions between them.

2. OpenKnowledge Components (OKCs): OKCs are
components within the OpenKnowledge framework
that implement the roles specified in IMs. An OKC
implemented for fulfilling a particular role in an IM
must possess the implementation of all of the con-
straints required for that role (i.e. it must be able to
successfully complete any interaction based on the
IM). Is within the OKCs where we must specify the
behaviour to be followed by each species in our eco-
system model in respect to the IMs they are going
to follow for their interactions.

Through the specification of IMs using LCC as a pro-
tocol specification language and the implementation of
OKCs, we describe agents and their interactions inside
an agent based ecological model. We want to employ a
model developed in this way for the study of the emer-
gence of interesting organisational patterns in natural
communities and the likely ecological mechanisms and
processes that are behind them. This model aims thus
to facilitate the experimentation of mechanisms that are
believed to enable the system level organisation of nat-
ural communities, in an automated manner; by specify-
ing interaction models between simulated species
(agents in the agent-based system) based on ecological
theory.

Results and Discussion
Based on the ecological ideas presented so far and mak-
ing use of LCC and the OpenKnowledge framework for
the development and deployment of a multi-agent based
simulation platform, we have designed and implemented
ecological protocols of interaction for defining the rela-
tionships among agents in simulated ecosystems. These
protocols are mainly focused on the ecological processes
occurring at the interaction level between species in
plant-animal mutualistic communities (see Methods).
We have found that interaction models for agents
coordination thus engineered facilitate the emergence of
network features such as those seen in ecological net-
works of interacting species in real communities, in our
artificial societies of agents. In this section we present



Lurgi and Robertson Automated Experimentation 2011, 3:1
http://www.aejournal.net/content/3/1/1

these results and we discuss how an ecological model of
this kind can be used to study the ecological mechan-
isms behind the emergence of the network patterns we
see in our agent societies and which are characteristic
organisational features of the ecological communities
they represent.

Our experiments consisted of the execution of a series
of independent simulation runs following the model
specifications outlined in the Methods section for para-
meter initialisation and runs configuration. During these
runs, relationships among pairs of agents arose with dif-
ferent strengths (the number of times an agent interacts
with any other relative to the number of times it has
interacted during the entire simulation) and with differ-
ent configurations.

We ran one hundred simulations where the configura-
tion and properties of the networks of interactions
between agents/species where similar among them. In
order to be consistent throughout this paper we have
selected fifteen samples from the simulated networks
obtained, because, as we will see below, this was the
number of natural communities that we were able to
extract from a dataset of empirically obtained mutualis-
tic networks that were more similar in number of spe-
cies to our networks, and that we will employ for the
analysis of similarities between the interactions networks
obtained by the model and those observed in the real
world. Changing the set of selected networks for analysis
would not noticeably affect the results presented.
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In this section we analyse the structure and features of
this set of simulated networks. Apart from the identity
of the agents, which is changed in every run based on
the different configurations they can be initialised with
(as explained in Methods), the architecture was, in gen-
eral, similar among the obtained interactions networks;
presenting constant patterns that are also found in eco-
logical networks.

The mean and its standard deviation for the number
of interactions occurring per node are plotted in
Figure 5 as the distribution of the frequency of each
number of interactions among the nodes in our net-
works. Although the standard deviation from the mean
value is high for small degree values, we can see in
this plot that the frequency of the number of interac-
tions among nodes is highly biased towards small
values and that few nodes among all the networks pos-
sess high degrees (i.e. are highly connected). It is a
common pattern in our simulated networks then, that
the majority of nodes possess low degrees, or interact
with only one or a few other nodes in the network,
and only a small fraction of agents are well connected
to others in the simulated ecosystem.

As we shall see, these are characteristic features that
are believed to account for interesting properties of a
particular kind of complex networks, which have come
to be known as scale-free networks, and are important
features observed in the mutualistic natural commu-
nities we are interested in analysing.
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Figure 5 Distributions of frequencies of nodes degrees in simulated networks. Frequency distribution of the mean (with its standard
deviation) of the number of interactions per node in fifteen of our simulated networks.
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Figure 6 shows an example, taken from one of the
runs in our experiments, where the relationships among
agents in our system are represented in a fashion similar
to networks of interacting species described in the field
of ecology (as we saw the Background section).

As explained in Methods, we have defined two roles
for agents to take in our simulations, in resemblance to
the actors taking part in plant-animal mutualistic inter-
actions in nature: the “host” and the “visitor”. In our
network representations we have represented “host” and
“visitor” agents/species as green and red nodes in the
graph respectively. Relationships between agents are
represented by arcs (directed edges), where the direction
of an arc represents the direction of the energy flow in
the ecological system while its thickness represents its
relative strength with respect to the other connections
that depart from the same host (green node). Numbers
on edges represent the number of times that particular
interaction was observed in the simulation (i.e. the num-
ber of times the pair of agents linked by that arc com-
pleted a successful interaction). A link (arc) is thus
generated between two agents whenever an interaction
is successfully completed amongst them.

By representing the relationships between the agents
in our artificial ecosystems in this way we are able to
extract features, obtain descriptors, and perform
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analyses over the resulting network based on methods
borrowed from network theory.

As introduced above (Figure 5), we obtained networks
that display a scale-free structure. The plots displayed in
Figure 7 show the data from the network in Figure 6,
where it can be observed that the majority of nodes in
this network have small degree (< 2), while a low frac-
tion of them are highly connected, showing a distribu-
tion of the frequency of interactions (left plot) biased
towards low values (1 and 2 interactions), and a distri-
bution of degrees (right plot) with a decreasing slope in
a fitted power law. Additionally, small-world properties
are found in our networks: with short paths between
any two nodes. Properties of the kind mentioned above,
which are encountered in the networks of interactions
among our agents in the simulated communities, are
common patterns also found in different kinds of com-
plex networks in nature and the artificial world [1], and
which differ significantly from the structure that we
would expect from a randomly assembled network.

Another property seen in our networks, which is related
to their scale-free character, is the preferential attachment
displayed by visitor agents with low degrees (e.g. the five
red nodes on the top right corner of Figure 6) to host
agents that are highly connected. This is a common fea-
ture encountered in mutualistic networks, where specialist
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number of times that particular interaction has been observed.

Figure 6 Example of the output of a simulation run performed using the model described. A network of interactions between artificial
species in a simulated ecosystem. Host and visitor agents are represented by green and red nodes respectively. The thickness of the arcs
represent the relative strength of that interaction relative to other coming from the same host species, while numbers on them indicate the
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species are more likely to interact with generalists [16].
Patterns of this kind are important in practice because, as
it has been argued, they can give us information about
functional properties of the communities such as: distur-
bances propagation speed and robustness to species loss,
which in turn provide us with a better understanding of
the relationship between the complexity and stability of
our ecological systems.

Asymmetric specialisation (i.e. a specialist interacting
with a generalist) has been found to be a pervasive fea-
ture of plant-pollinator interactions networks, and it is
believed to be beneficial for the majority of species in
these communities because it facilitates the avoidance of
extinction risks when species are highly reciprocally spe-
cialised [19]. This is another feature arising in the net-
work of interactions among agents in the model
presented.

The features encountered in the networks of relation-
ships amongst our artificial agents are in many ways
similar to those found in real mutualistic networks, as
shown above; which are patterns that differentiate ran-
dom networks from self-organised complex networks of
relationships. This network architecture is an emergent
property of our agent based system since the only
mechanisms involved in agents’ interactions are those
specified by the protocol of interaction presented in the
Methods section. The creation of such a complex and
intricate pattern of relationships is not a hardwired
property of the artificial communities arising from the
simulations performed, but rather the product of many
different agents interacting together for achieving their
respective goals (gather resources and survive).

This conclusion is important because it means that
the ecological and behavioural mechanisms that we are
studying and that are translated into interaction models
between agents in our computer model are directly and
solely responsible for the system level attributes found

in the artificial communities thus enabled, becoming in
this way plausible causes for the emergence of these fea-
tures in the studied systems.

Comparing with Empirical Data

In order to test the extent to which the networks of
interactions found in our artificial systems are similar to
mutualistic networks of interactions found in the real
world (apart from the qualitative similarities introduced
above), we have compared the architecture of the net-
works obtained from our simulations to some networks
empirically collected from real communities and that
have been compiled, analysed, and provided as supple-
mentary material by Rezende et al in [31]. Although in
that paper they used the networks for different kinds of
analyses, the datasets provided are useful for getting an
idea of the common features encountered in mutualistic
networks.

Because some of the properties of interest for analys-
ing ecological networks are scale dependent, we have
selected fifteen networks from this dataset, based on the
number of species composing it and that were closer to
the number of agents in our simulations, for comparison
against fifteen of our simulated networks. Connectance
(C = L/S?), the fraction of all possible links that are rea-
lised in a network, is an important property that is com-
monly employed in the analysis of ecological networks
and which provides information about the degree of
connectivity between their nodes. We use this network
measure and the Nestedness metric based on Overlap
and Decreasing Fill (NODF), introduced by Almeida-
Neto et al in [32], which provides a measure for com-
munity organisation in plant-animal mutualistic net-
works of interactions based on the overlapping diets of
the species in the community studied; for comparing
our simulated networks with fifteen empirically obtained
plant-animal mutualistic networks. Additionally we
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Table 1 Connectance and NODF index of nestedness
values from the artificial and real networks.

Simulated C(L/S’) NODF Empirical C (L /S NODF
1 0053 25203 SAPF 0031 1836
2 0.062 37.063 CACO 0.034 29693
3 0.064 32456 CAFR 0.039 34.166
4 0.066 28667 SCHM 0.041 56.66
5 0.067 36.132 MOMA 0.045 32067
6 0.068 33333 GEN1 0.061 34.243
7 0.07 42913 OFLO 0.062 35.961
8 0077 61.06 BAIR 0.064 50.98
9 0.079 44,409 ESKI 0071 54.586
10 0.079 51404 BEEH 0.074 67.66
1 0.083 54.82 WYTH 0075 45411
12 0083 70.102 KANT 0.084 67.344
13 0.086 68.528 LOPE 0.103 57423
14 0.087 59211 HRAT 0.111 78756
15 0.087 63.739 FROS 0.163 74571

The values were taken from the networks of interactions of fifteen simulated
digital communities of agents and fifteen empirically obtained networks from
natural communities. The names of the empirical networks are as presented
in [31], and the numbers used to identify the simulated networks are only for
id purposes and are not related to any feature of the network itself.
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perform qualitative comparisons between the structures
obtained in one of our networks and one of the natural
communities considered for this analysis.

In table 1 we can see the connectance and NODF
values derived from our simulated networks and the
selected empirical networks obtained from natural com-
munities, and in Figure 8 we plot the NODF against the
connectance values with the double purpose of analysing
the behaviour of nestedness in relation to changes in the
connectance of the network, and to compare these rela-
tionships in our simulated communities against their
natural counterparts.

As we can see, in both types of networks there is a
positive relationship between the connectance of the net-
work and the nestedness value. This is not surprising,
since the more connections a network has the more they
can contribute to the nested diets observed in those net-
works. It is perfectly possible however, that more links
could mean less nested communities; it is important to
bear in mind then that in well organised communities,
like the ones we consider in this work, the more con-
nected networks are, the more nested they become.
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Figure 8 Connectance versus NODF nestedness values in natural and simulated communities. The values plotted are the connectance vs
the NODF nestedness indexes obtained from the natural (blue dots) and simulated (yellow dots) communities presented in table 1 (see text).
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We also can see from this plot (Figure 8) that the data
points corresponding to the naturally occurring commu-
nities are more distributed through the graph, while the
points representing our simulated networks are more
concentrated around connectances between 0.05 and
0.09, and nestedness indexes of 25 and 70. Apart from
telling us about the variability encountered in real com-
munities in this respect, this reinforces the fact that our
simulated communities, although differing in some
aspects from run to run, share a similar structure and
enjoy features seen in natural communities.

These data (table 1 and Figure 8) also show us that
the values of connectance and nestedness obtained
from our simulated communities agree with the
values of these measures commonly found in natural
communities, where the connectance is normally
between 0.03 and 0.1, and the nestedness values are
usually found between 20 and 80. In our commu-
nities, the connectance values were greater than 0.05
and lower than 0.1; similarly, the NODF values for
our communities were distributed along the 25-80
range of values. Apart from showing a connectance-
nestedness relation comparable to that found in nat-
ural communities, these values are also in line with
what is expected to find in these, which provides
more evidence for the self-organised character of the
communities modelled.
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We want to further explore the similarities between
our agent-based model communities and natural ones;
for this we have selected, from the set presented above,
one of our simulated and one of the empirically
observed systems to perform a one to one comparison.

Two networks were thus selected based on their simi-
litudes not only in connectance and nestedness values
but also taking into account other features, as we shall
see in the following paragraphs. The networks selected
were: the one represented by the number 3 in table 1,
with values 0.064 and 32.456 of connectance and NODF
index for nestedness respectively, for representing our
simulated communities; and the OFLO natural commu-
nity, with 0.062 connectance and 35.961 NODF index,
as a representative of the natural communities
considered.

Figures 9 and 10 show the network of relationships
between entities in the simulated community number 3
and the OFLO natural community, respectively.

When closely inspecting these two networks we can
easily realise a number of broad similarities such as the
high proportion of visitor nodes (nodes in red) posses-
sing only one interaction and also an important fraction
of host nodes (nodes in green) with two interactions or
less. It also attracts our attention the presence of one
highly connected host node in both of the networks
(green node in the bottom left corner in each of the

800 Digital Ec

Network Si Tool

{Network | Statistics

> » & 5 & & 0 S

netowork connectance (C=L/542) = 0.0640495867768595

Figure 9 Network representation of community number 3 in our simulations as presented in table 1. Host and visitor agents are
represented by green and red nodes respectively. The thickness of the arcs represent the relative strength of that interaction relative to other
coming from the same host species, while numbers on them indicate the number of times that particular interaction has been observed.
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Figure 10 Network representation of the OFLO natural community as introduced in table 1. Host and visitor agents are represented by
green and red nodes respectively. The thickness of the arcs represent the relative strength of that interaction relative to other coming from the
same host species, while numbers on them indicate the number of times that particular interaction has been observed.

networks), and also on the side of the visitor species/
agents (red node on the top left). These nodes act as
generalists/hubs, bringing cohesion and reachability to
the whole network.

Another important feature captured by looking at the
network of interactions and that is shared by our natural
and artificial communities is the low fraction of strong
dependences among nodes (solid dark edges in the
graph) and the abundance of weak dependences, which
in natural communities is believed to account for the
stability and resilience of these systems, since the loss of
a link can be easily adjusted for by recurring to other
connections in the network.

Apart from the graphical representation of the interac-
tions network, our simulation tool allows us to analyse
certain properties derived from its structure and that
can be employed to deepen our comparison among the
selected networks.

Natural communities, as we have seen above, are
somewhat less predictable than our simulated ones. This
can be confirmed when comparing the interactions
matrices of our simulated community number 3 and
the OFLO natural community (bottom left plots of
Figures 11 and 12 respectively): community number
three presents a much more organised structure, with
few interactions below the isocline of perfect nestedness,
while the OFLO community presents not only more

interactions below the isocline but also a few of them
are actually far removed from it. Also the degree distri-
butions in both communities, although agreeing in the
overall pattern of power law fit, differ subtly by the fact
that the values in our simulated community are closer
to the fitted line (top right plots in the figures).

In spite of these differences, the communities present
very similar distributions of the frequencies of the num-
ber of interactions (top left plots), with practically all
the nodes possessing less than five interactions and the
majority of them with two or one. Additionally, only
three nodes in the case of community number 3 and
two in the case of the OFLO community possess more
than five interactions: reaffirming in this way the scale-
free character displayed not only by the natural commu-
nities employed here as references, which is expected
from this type of networks, but also by our simulated
communities as an emergent feature of self-organisation
in our agent-based simulations.

In the bottom right plots of Figures 11 and 12 we can
observe the distribution of the dependence values (how
dependent is a species on the others) for the simulated
and the natural communities respectively. Again, there
can be seen the similarities between these two instances
of artificial and natural communities, with the majority
of the dependence values located between 0.0 and 0.4
(agents/species not very dependent on other agents/
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Figure 11 Properties derived from the network of interactions in community number 3 in our simulations. The community network is
displayed in figure 9.
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species) and few values above this range. It is important
to realise however that the probability of a dependence
value of 1.0 (the highest value), which implies that there
may exist a node which is entirely dependent on
another, is high for the dependence of visitor on host
agents, in comparison with the other values of depen-
dence; and this happens in both the natural and the arti-
ficial community. This might be due to the fact that a
considerable number of visitor species on the network
are involved in only one interaction and this could
potentially mean that, in the event of losing the resource
they exploit and if they are not able to adapt to exploit a
different one, they could fail to survive, becoming in this
way part of the cascading effects of an extinction.

Figure 13 shows the plots displaying the properties of
community number 3 (Figure 11) and the OFLO natural
community (Figure 12) overlaid, which facilitates the
comparison between the datasets. Data shown in grey
on the plots corresponds to the OFLO natural system
while data in colour comes from the simulated commu-
nity 3. In this picture the similarities and differences
between these communities, as highlighted above,
become more obvious and it can be seen how the inter-
actions and dependence values distributions follow simi-
lar patterns, with slight differences; and how the
interaction matrix for community number 3 is better
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organised, from the point of view of the nestedness iso-
cline, than its counterpart in the OFLO community
(grey squares in the bottom left plot of Figure 13).

The similarities found between natural communities
and our simulated ones, not only in terms of the net-
work structure, but also in terms of their features and
characteristics, let us see how the mechanisms imple-
mented at the individual interaction level between artifi-
cial agents has allowed us to obtain system level
properties that are commonly encountered in natural
communities. This model can thus help us study and
analyse the possible mechanisms by which these proper-
ties, and the features of stability and robustness they
provide to natural ecosystems emerge; not only by
employing the example interaction protocol we have
used for demonstrating the viability of this approach,
but also by incorporating to the model many other
mechanisms and processes that could in theory provide
these systems with the characteristics they display and
that are awaiting to be experimentally tested.

Conclusions

In this paper we have presented an automated method
for experimentation in ecological theory. The experi-
ments that can be performed using this approach are
based on an agent-based model that is able to obtain

2l ld 1:

‘I Out-interaction frequency B In-interaction uoquun:yl

Interactions Matrix
NODF Index = 32.96061

Oi ] = " @ " g W®ag Fy—— =
L om n n R e m =
5| - o " = s ®m =
" . L "y
| - " - =
b5l u M B - ®
% § H./ .
q || = : -
|l = 7 L}
ol %7
sl | - [ ]
ol ™
| % .
0 5 9

sources

W observed interactions — nestedness isocline

correspond to community number 3.

anNo Digital Ecosystems Network Simul Tool
[ Network | Statistics |
Frequency distributions Degree distributions
for the number of interactions 3 T ; T T
3] i |
E N
é_ £ 0l |

Figure 13 Properties of the communities number 3 (Figure 11) and OFLO (Figure 12) overlaid. In this plot we can see Figures 11 and 12
overlaid on each other, which facilitates the comparison between the properties of the community number 3 and the OFLO community. The
datasets presented in grey in each of the plots correspond to the OFLO natural community, while the plots shown in their original colour

ik 2 3 4 5 10
k

Sources O Sinks — Power

Relative frequency distributions of dependence values

AL

0 0.1 0.2 0.3 4 0.5 0.6 0.7 0.8 0.9 1.0
dependence

W sources on sinks B sinks on sources|

probability

{

|

|

|

|

|
f‘i’i“
A

‘AIEID‘.

0.




Lurgi and Robertson Automated Experimentation 2011, 3:1
http://www.aejournal.net/content/3/1/1

the network of interactions among simulated species in
an artificial community that interact based on a protocol
of interaction which relies heavily upon ecological the-
ory for the representation of the relationships among
species as they occur in real communities. The ultimate
goal of this model is the analyses of the possible
mechanisms and processes by which the characteristics
and patterns observed in the network of interactions
among species in natural communities, and that are
believed to account for certain features such as stability
and robustness in these ecological systems, arise.

The emergence of topological patterns in ecological
networks has puzzled researchers in theoretical ecology,
and many processes have been proposed as explanations
for this emergence. In this work we take as an example
the mutualistic relationship between plants and their
animal pollinators to design an interaction protocol
based on mechanisms believed to be involved in this
kind of interactions to demonstrate that, to some extent,
interesting community patterns, similar in many ways to
the kinds found in this type of natural communities, are
found only by enforcing interaction models thus engi-
neered between agents in the agent-based model.

An automated framework of this kind, that allows
ecologists to experiment with different mechanisms in
order to find the ones that are most likely involved in
the development of the intricate networks of relation-
ships we find in nature, can enhance the experimental
capabilities of researchers in this field, contributing in
this way to the advancement of the understanding of
the mechanisms behind community organisation in nat-
ural systems, and ultimately ecological theory.

In spite of the advantages mentioned above, the model
presented here is limited by the fact that we are only con-
sidering mutualistic interactions. Our framework will thus
benefit from a broader view on the community by includ-
ing other kind of ecological relationships such as predator-
prey and parasitic interactions. Although the current state
of model may be useful for the study of mutualistic inter-
actions, and any researcher might be able extend this only
by specifying new interaction protocols, an interesting
venue to continue its development is to perform a study
similar to that presented here on the mechanisms behind
mutualistic interactions but on other types of relation-
ships, which will allow us to define new kinds of interac-
tions and analyse the outcomes of the extended model.

Although the model works well from a behavioural
point of view, it is not able to relate interactions to a
phylogenetic background of species, which has been
recently studied as a factor that could contribute to the
appearance and maintenance of interactions between
certain species [31]. Including a genetic and evolutionary
component to this framework might be of interest not
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only for this purpose but also to study the role of evolu-
tion and coevolution in community organisation.

Another interesting venue for further development is
the adaptation of this generic model to an specific
mutualistic system: by changing some sections of the
interaction protocol or the way agents behave we can
match more closely our model to the studied system in
order to study their particularities.

Methods

We specify an ecologically inspired interaction model
(IM) between agents in a agent-based model for the
study of ecological interactions among species in natural
communities. The simulated ecosystem enabled in this
way is implemented using the OpenKnowledge system
and therefore, LCC for the specification of the IM (as
introduced in the Background section). In this section
we describe the design and implementation of this digi-
tal environment, with particular emphasis on the ecolo-
gical concepts and mechanisms used as the source of
inspiration for defining the ecological protocol.

An Ecologically Inspired Interaction Protocol

For describing interactions among agents in our simu-
lated ecosystem we take inspiration from mechanisms
believed to account for system-level patterns in natural
communities [20], specifically we have employed some
concepts that are related to the processes of trait
matching and spatial distribution in naturally occurring
populations:

1. Traits: a set of characteristics that define any
entity within the system.

2. Degree of complementarity: the degree to which
any trait of a given individual/agent is complemen-
tary to another trait possessed by another agent
within the ecosystem.

3. Habitat: a representation of the part of the envir-
onment where the agent spends most of its live. An
agent is more likely to interact with others in its
same habitat.

4. Meta-communities: aggregation of entities that
belong to different habitats (or regions) and that
occasionally interact when certain conditions are met.
5. Niche: the multidimensional space composed by
different characteristics of the environment (relation-
ships) in which a given agent lives. This is an emer-
gent property, and will, in our case, depend on the
composition of the community, i.e. the agents with
which interaction is feasible.

6. Fitness: a measure that is used to determine how
good an agent is doing during its lifetime in the
ecosystem.
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These features, sometimes employed to characterise
species in natural communities, will help us not only to
define interactions between our agents, but also to
design the internal structure of the agents themselves
for coping with their interaction partners.

Figures 14 and 15 show the IM, written in LCC and
based on the ecological concepts described above, that
specifies the interactions between agents in our simu-
lated ecosystem.

Where, as introduced in the Background section (LCC
Syntax ), null denotes an event which does not involve
message passing; the operator :: is used to declare the
definition of a role within the protocol; and the
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operators <, then and or are connectives for logical
implication, sequence and choice respectively. M = A
denotes that a message, M, is sent out to agent A. M «
A denotes that a message, M, from agent A is received.

In our example we have defined the roles of “host”
and “visitor” in resemblance to the actors taking part in
an ecological mutualistic interaction. We can see how
the ecological concepts introduced above of: traits,
degree of complementarity, habitat, and meta-commu-
nities; are explicitly introduced in the interaction proto-
col specification.

In any given execution flow of this protocol the agent
acting as visitor will initiate the interaction by searching

01 a(visitor, X) ::
02 null < chooseHost(Y, ListO f Hosts)
03 then
04 whereabout = a(host,Y)
05 then
06 ( in(HabitatHost) < a(host,Y’)
07 then
08 (( (( null + sameHabitat(Habitat Host)
09 then
10 whichtrait = a(host,Y))
11 or
12 ( null < metaCommunity( )
13 then
14 whichtrait = a(host,Y)))
15 then
16 availabletrait(Trait) < a(host,Y)
17 then
18 null < haveTrait(Trait)
19 then
20 whichsize = a(host,Y)
21 then
22 size(TraitSize) < a(host,Y)
23 then
24 ( null < complementary(TraitSize)
25 then
26 null < need(Amount, Reward)
27 then
28 exchange(Amount, Reward) = a(host,Y)
29 then
30 of fer(Of fered) < a(host,Y)
31 then
32 null < consumeResource(O f fered, Reward)))
33 or
34 ( quit = a(host,Y))))
35 then
36 a(visitor, X)
Figure 14 Ecologically inspired interaction model, written in LCC, for agents coordination in an artificial ecosystem. The “visitor” role is
specified in this section of the protocol.
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37 a(host,Y) ::

38 whereabout < a(visitor, X)

39 then

40 ( null < location(H abitat)

41 then

42 in(Habitat) = a(visitor, X)

43 then

44 (( quit < a(visitor, X))

45 or

46 ( whichtrait < a(visitor, X)

47 then

48 null < myTrait(Trait)

49 then

50 availabletrait(Trait) = a(visitor, X)

51 then

52 (( quit < a(visitor, X))

53 or

54 ( whichsize < a(visitor, X)

%) then

56 null < traitSize(TraitSize)

o7 then

58 size(TraitSize) = a(visitor, X)

59 then

60 (( quit < a(visitor, X))

61 or

62 ( exchange(Amount, Reward) < a(visitor, X)

63 then

64 null < obtained(Reward)

65 then

66 null < has(Amount, O f fered)

67 then

68 of fer(Of fered) = a(visitor, X)

69 then

70 null < synthesis(Reward, Of fered)))))))

71 then

72 a(host,Y))
Figure 15 Ecologically inspired interaction model, written in LCC, for agents coordination in an artificial ecosystem. The “host” role is
specified in this section of the protocol.

for appropriate partners (line 2 in the protocol); for this
action the chooseHost predicate is used for selecting one of
the available hosts in ListOfHosts. The selected host is
referenced by the variable Y. Once it finds a suitable host,
the interaction develops through the exchange of a series
of messages where the agents exchange information about:

1. The habitat they are inhabiting and whether they
will form a meta-community (lines 4-8,12 and 38-
42). In this part of the interaction the visitor agent
sends the whereabout message to the host in order
to determine its habitat location, and consequently,

the latter responds using the in message which con-
tains a reference to the habitat (Habitat, Habi-
tatHost) in which it is located. The host obtains a
reference to its habitat employing the location con-
straint. The visitor agent then checks whether it
shares habitat with the host using the sameHabitat
predicate; if they do not share the same habitat, the
visitor agent can decide whether to form a meta-
community with the host agent using the metaCom-
munity constraint.

2. The matching trait for the interaction (lines 10,14-
18 and 46-50). This step is performed using the
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whichtrait message, sent by the visitor agent to the
host in order to find out the trait of interest. The
host solves the constraint myTrait, and sends its
Trait to the visitor through the availableTrait mes-
sage. The visitor then confirms whether it can cope
with that Trait using the haveTrait predicate.

3. Its degree of complementarity (lines 20-24 and
54-58). The information about the degree to which
the matching trait is complementary is exchanged
using the whichsize and size messages. The host uses
the traitSize constraint to determine a value (Trait-
Size) used to evaluate the trait compatibility, which
is finally evaluated by the visitor through the comple-
mentary constraint.

4. And the resource amount they will exchange
(lines 26-32 and 62-70). Here the messages exchange
and offer are employed to exchange information
about the Amount of resource required by the visitor
and the Reward offered to the host. The host assimi-
lates the Reward using the obtained constraint and
determines the amount of resource (Offered) it is
able to offer through the has predicate. Finally, the
exchanged resources are consumed using the consu-
meResource and synthesis constraints by the visitor
and host agents respectively.

The quit message (lines 34, 44, 52, and 60 in the pro-
tocol) is used by the agents to terminate the interaction
whenever is found that the necessary ecological condi-
tions for it to happen are not met.

The concepts of niche and fitness are embedded
within each of the agents themselves and represent the
set of partners that can interact with a particular agent
based on the IM, and a measure of how well the agent
is performing, respectively.

Agents in the OpenKnowledge System

In order to be able to take part in interactions described
by the protocol introduced above, agents need to imple-
ment the constraints specified by each of the roles they
want to take during any given interaction. This is done
through the implementation of OpenKnowledge Com-
ponents (OKCs) (see OpenKnowledge in the Background
section). Since the OpenKnowledge system is implemen-
ted in the Java programming language [33], the OKCs
are merely java classes that implement, in the form of
methods, the constraints embedded in the protocol.

We implemented the OKCs that will allow our agents
to interact by enacting the IM, using ecological concepts
as those employed for the specification of the interac-
tion protocol. Each constraint solved by the agents
instantiating the OKCs has an ecological meaning, and
jointly they are meant to promote mutualistic behaviour
between the agents composing the digital environment.
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The concept of fitness, as introduced above, is part of
the agent itself, and is included in the agent’s implemen-
tation by specifying a minimum amount of resources
that must be maintained for the agent to be able to sur-
vive. The survival ability of a given agent is then, as it is
in its natural counterparts (i.e. organisms in natural
communities), directly correlated with its efficiency
within the system, determining in this way its fitness
measure.

The resolution of the constraints is determined in
each agent by a series of attributes that are part of their
specification and represent the knowledge they possess
about the environment in which they live, as well as
their internal properties. Some of these attributes, such
as: the habitat they occupy, the ability they have to form
meta-communities, the traits they possess and their fea-
tures, the amount of resource they are willing to offer,
and the amount they need to obtain from their partner;
will define the niche that a given agent occupies, since
these will restrict in an unique manner the set of other
agents present in the environment with which it will be
able to interact.

It is important to note at this point that the features
regarding the traits possessed by each agent are mea-
sured using an index of complementarity, which has
been named size within the protocol in resemblance to
the feature that is more commonly used in nature to
determine the complementarity between traits of differ-
ent individuals (e.g. the size of the bill of a humming-
bird against the size of the corolla of the flower it aims
to pollinate).

The Visitor OKC
The visitor OKC implements the following methods, as
specified by the IM:

«+ chooseHost: this method is used by the agent to
select a host to interact with from the list of avail-
able hosts. The OpenKnowledge offers the function-
ality of locating all the peers that are subscribed to a
particular role. The chooseHost function takes the
list of peers (agents) that are subscribed to the host
role and selects one for interaction.

» sameHabitat: this constraint is used by the agent to
determine whether it currently occupies the same
habitat as the host with which it intends to interact.
The parameter HabitatHost is received by this
method which, by performing a simple number com-
parison (the habitat is represented by a number
within the agent), returns true if the visitor agent is
in the same habitat as the host or false otherwise.

+ metaCommunity: agents are able to form meta-
communities by interacting with other agents that
are not in their same habitat. For solving this con-
straint each agent possesses a value that determines
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the probability with which it will interact with an
individual in other habitat. Individuals forming
meta-communities will spend more resources in the
interaction than if they were to interact with others
in the same habitat, for this reason, this kind of
interactions (as in nature) occur rarely. This method
implements thus, the process of deciding whether to
interact with an agent belonging to a different
community.

« haveTrait: this function is employed by agents tak-
ing the visitor role for establishing whether they pos-
sess a certain characteristic. In our system there are
finite number of characteristics, and each agent can
possess any combination of them. When an agent is
trying to interact with another they must agree on a
trait that allows them to create a relationship link.
The method receives the parameter Trait and will
return true if the agent possesses it and false
otherwise.

» complementary: after asking the agent with the
host role the “size” of its trait (i.e. the measure that
allows to compare traits in order to determine the
degree to which they are complementary), the OKC
allows to establish whether the selected trait is com-
plementary with the matching trait in the other
agent using this function.

« need: using this function the visitor agent is able to
calculate the amount of resource it will demand
from the host agent, value that is stored in the
Amount parameter, and the amount of it that is
going to be offered to the host as a Reward. Both of
this quantities are calculated based on the comple-
mentarity of traits.

« consumeResource: this method allows for the
update of the resource that the visitor agent has
based on the Offered amount received from the host
and the Reward offered to it during the negotiation
process. Also, the implementation takes into account
resources spent in other activities or living costs and
these factors are added to the calculation of the final
resource kept by the agent.

It is important to note here that a value indicating the
degree of complementarity between the trait of a given
agent and that of its interacting partner, which is calcu-
lated based on the difference between the sizes of the
trait being considered, is stored within the agent taking
the visitor role and is used for determining the reward
and the amount of resource gained.

This complementarityDegree is then employed by the
visitor agent to calculate the percentage of resource it
will demand from its host and the amount of reward that
it will offer to it. The more the complementary their
traits are, the more resource the visitor will be able to
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demand and the more the reward it will be in a position
to offer. This again is generally the rule in natural inter-
actions, where morphological constraints, and the degree
to which they match amongst interacting partners, deter-
mine the amount of resource they are able to exchange,
and therefore, the likeliness of that interaction to happen.
The Host OKC

In order to be able to take the “host” role in an interac-
tion described by the IM introduced above, an agent
must instantiate an OKC implementing the following
methods:

+ location: using this method, an agent is able to
retrieve the habitat it is inhabiting in any given
moment, which is maintained as a variable of the
agent, and to assign its value to the parameter Habi-
tat that is given as an input to this function. This
value will be sent to the visitor agent for determin-
ing whether the agents will successfully complete the
interaction, as explained above.

» myTrait: after sending the information about the
habitat it occupies, the agent taking the role of host
will be asked to provide information about the trait
available for the current interaction. Using the
myTrait method, it will recover this information
from its internal state and will pass it to the visitor
agent using the Trait variable.

« traitSize: this function is used to provide the value
of the size of the trait being considered (stored in
the TraitSize variable), and which will be sent to the
visitor agent which in turn will calculate the comple-
mentarity degree as previously explained.

« obtained: through this method, the host OKC
obtains the value of the Reward offered by the visitor
in this interaction and stores it as part of the host’s
internal state.

« has: this function receives the Amount of resource
demanded by the visitor agent; and based on this,
the internal resources of the own host agent, and
the reward offered, calculates the amount of
resource that it will provide to the visitor and stores
it in the variable Offered, that will be sent to that
agent.

« synthesis: taking into consideration the Reward
obtained from the visitor and the resource Offered
during the interaction, this method will update the
amount of resource available to the host after the
interaction is completed.

The OKCs thus implemented are instantiated by peers
in the OpenKnowledge system, that represent the agents
in our simulated ecosystem. This process allows peers
to take the roles specified within the IM and that are
realised by the OKCs instances.
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During the initialisation process, every agent is
assigned the role it is going to take in any instance of
the IM. Through the discovery service provided by the
OpenKnowledge platform, the IM is published and all
the peers in the network are then able to take part on
interactions defined by it, as long as they have the
necessary roles enabled.

When the system finds suitable partners for an inter-
action, these agents will be “recruited” and they will
instantiate the OKC corresponding to the role they are
about to fulfil within the interaction. The execution of
the interaction protocol then proceeds and the con-
straints composing it are solved by each agent using the
respective OKC instances, this process determines the
path of the interaction (remember that agents can dis-
miss an interaction based on certain conditions) and the
flow of messages exchanged as part of it. Upon success-
ful completion of the interaction, agents are then freed
to engage in another one with any other suitable agent
on the network.

Experimental Design

Our model has a number of parameters and settings
that can be configured in order to produce different
outcomes given different circumstances for the agents to
interact. Our default general settings however, define
certain values that are common to all of the simulation
results presented in the Results section. The main set-
tings concerning the model are:

1. interaction protocol: the interaction protocol
employed is the one presented above, and this is the
way agents interact, however, as also explained in
that section, the protocol provides the possibility for
agents to leave interactions at different points of
their execution based on their capacities and necessi-
ties, and therefore, the outcome of any given interac-
tion may differ from another one.

2. agent types: even though agents in our digital eco-
system can potentially take any of the roles specified
in the interaction protocol, we have constrained
agents to take only one of the roles available, in
order to facilitate the analysis of the interactions by
closely resembling the structure of mutualistic net-
works in nature. This does not affect the results
obtained and they will still apply even if agents take
both roles in the interaction (ideally of course when
the other role is taken by another agent).

3. number of agents: in resemblance to the propor-
tion of plants versus pollinators in plant-animal
interaction networks, where there are generally more
plant species than animal ones, we set the number
of host agents in our digital ecosystems to ten and
that of the visitors to fifteen. Although the
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proportions of each type of agent in relation with
each other are taken from natural communities, the
actual number in each category is somewhat arbi-
trary, but it is a way to keep the system within a
manageable size for the execution of the experi-
ments. It is important to note here that even with
the number of agents set to a particular value, there
might be agents that for some reason, like for exam-
ple the lack of resources, are not able to embark
upon any interactions; in these cases, these agents
are not presented in the graph representation of the
network of interactions.

4. number of habitats: the habitat a given agent
occupies will partially determine whether it will be
able to interact with the agent selected for interac-
tion; they will be more likely to interact if in the
same habitat than otherwise. In our experiments the
default number of habitats employed is two, and
agents are evenly distributed among both habitats.

5. minimum and maximum resources: any given
interaction, as seen above, is based around the
exchange of resources that will ultimately allow
agents to survive; at the beginning of each run,
agents are given a certain amount of resources that
is selected randomly from a normal distribution
bounded by a minimum and maximum amount of
resources. By default the range for this amount is
between five (min resource) and twenty (max
resource). Although the initial amount of resource
may determine the fate of an agent, these numbers
were selected in order to avoid any premature agent
death due to lack of resources.

6. meta-community formation: agents possess the
ability of interacting with individuals belonging to
different habitats than their own, when this happens
they are said to form a meta-community. In our
simulations, agents are only allowed to take part in a
meta-community interaction if their own resources
are at least half the maximum amount of resources
(previous point), because if they get involved in this
kind of interactions they will loose more resources
than if interacting with individuals in the same habi-
tat. The probability of any given agent forming a
meta-community association is 0.1.

7. maximum trait size: as introduced in the protocol
specification, the size of a trait will determine the
degree to which agents in an interaction are comple-
mentary to one another. In our model we have a
parameter specifying the maximum size of the inter-
action trait, and all the agents will have sizes ranging
from zero to this maximum size. The default value
for the max size of traits in our system is five.

8. number of interactions: an interaction is consid-
ered to be successfully completed when the partners
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involved in it actually exchange resources, i.e. all the
ecological conditions set by the protocol are met
and therefore no agent has quit the interaction pre-
maturely. Each one of our simulation runs were
allowed to evolve for a fixed number of successfully
completed interactions: three hundred (300). This
number was selected based on the observation of
previous runs in which the network of interactions
reached an stable state, in the sense that its topologi-
cal configuration was not noticeably affected by
further interactions, as the number of interactions
amongst the agents in the system approached this
number. This has no particular ecological meaning
since it is only an artifactual consequence of the
model in which the agents have originally no inter-
actions with others. It is difficult to compare this to
any situation in the real world, because in a real eco-
system, the interactions network is already formed
and the stability of the system is evaluated from the
point of view of its resilience rather than its time to
achieve a particular form, which occurs at much lar-
ger timescales and is a much more dynamic process
in terms of species composition.

Among the parameters introduced above we find
some ecological, like: the agent types, the number of
habitats and the meta-community formation probability;
which default values have been taken from values found
in ecological systems for this kind of features. Whereas
the default values for parameters such as the minimum
and maximum amount of resources within the agents,
or the maximum trait size where arbitrarily defined in
order to closely simulate the conditions that will com-
monly determine the outcomes of interactions among
species in the type of natural systems subject of this
study.

In any case, and in order to evaluate the impact of
changing some of these parameters in different ways, we
performed a series of sensitivity analyses with respect to
the initial values of these variables [34], and we found
that they were robust to changes and the organisation of
the communities arising from the simulations performed
were not noticeably affected by changes on their values.

The experimental conditions described above provide
the configuration for our framework, on top of which
we run a series of simulations that allowed us to evalu-
ate our model in a controlled and methodological way
and obtain the results presented in the Results section.
In every simulation execution we deploy the Open-
Knowledge platform and create every agent following
the specifications outlined above; we allow for the inter-
actions among agents based on random encounters
between them and after the number of interactions spe-
cified as a termination criterion (three hundred) has
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been reached, the simulation finishes and the final net-
work of interactions can be analysed.

Network Metrics

Having the representation of the network of interactions
in the form of a graph allows us to extract information
from it and to calculate interesting properties that can
account for patterns displayed by the network. For the
analysis of the interactions networks obtained from the
simulated communities we have taken four properties
that are commonly used in the field of mutualistic net-
works to analyse this kind of webs of interactions. These
are presented in the results above since they help us
study our agents networks:

1. frequency distribution of the number of interac-
tions: this represents the distribution of the frequen-
cies with which we encounter a node with a certain
number of interactions. It is displayed in the form of
a plot which allows to obtain a figure of the com-
monness of well connected versus less connected
nodes.

2. degree distribution: the degree of a node is the
number of links it has; in our case, since the edges
connecting nodes are directed (arcs) we will have in-
degree (the number of edges in which the node is
the sink or head) and out-degree (the number of
edges in which the node is the source or tail). The
distribution of the frequencies of degrees is a good
indicative of the extent to which a given network
possesses scale-free features.

3. interactions matrix and nestedness index: the
interactions matrix let us see the relations happening
between pairs of agents. Based on these interactions
we calculate the isocline of perfect nestedness, as
introduced in [35], which by taking into account the
number of interactions occurring in the network
obtains an estimate of a perfectly nested matrix and
gives a curve that allows us to visualise the pattern
that we should expect from it; this curve, plotted on
top of the actual interactions matrix gives an idea
about how nested our matrix is. Additionally, we cal-
culate the Nestedness metric based on Overlap and
Decreasing Fill (NODF), as presented in [32], and
which is a metric commonly used in the analysis of
nestedness in ecological networks [36] for determin-
ing the extend to which a given interaction network
presents a nested pattern.

4. relative frequency distribution of dependence
values: this plot displays the distribution of the fre-
quencies of the values of dependence of one node
on another; we have dependence of host nodes on
visitor nodes and can also calculate the dependence
of a visitor agent on a host, displaying in this way
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the extent to which agents are dependent on others
for survival. This plot is complementary to the dis-
tribution of the frequency of the number of interac-
tions in the sense that we can extract information
about the average number of links per node from
the latter and get an idea of how strong links may
be within the network from the dependence values.
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